Non-convex Robust PCA

نویسندگان

  • Praneeth Netrapalli
  • U. N. Niranjan
  • Sujay Sanghavi
  • Anima Anandkumar
  • Prateek Jain
چکیده

We propose a new method for robust PCA – the task of recovering a low-rank matrix from sparse corruptions that are of unknown value and support. Our method involves alternating between projecting appropriate residuals onto the set of low-rank matrices, and the set of sparse matrices; each projection is non-convex but easy to compute. In spite of this non-convexity, we establish exact recovery of the lowrank matrix, under the same conditions that are required by existing methods (which are based on convex optimization). For anm×n input matrix (m ≤ n), our method has a running time of O ( rmn ) per iteration, and needs O (log(1/ )) iterations to reach an accuracy of . This is close to the running times of simple PCA via the power method, which requires O (rmn) per iteration, and O (log(1/ )) iterations. In contrast, the existing methods for robust PCA, which are based on convex optimization, have O ( mn ) complexity per iteration, and take O (1/ ) iterations, i.e., exponentially more iterations for the same accuracy. Experiments on both synthetic and real data establishes the improved speed and accuracy of our method over existing convex implementations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provable Non-convex Robust PCA

We propose a new method for robust PCA – the task of recovering a low-rank matrix from sparse corruptions that are of unknown value and support. Our method involves alternating between projecting appropriate residuals onto the set of lowrank matrices, and the set of sparse matrices; each projection is non-convex but easy to compute. In spite of this non-convexity, we establish exact recovery of...

متن کامل

Generalised Scalable Robust Principal Component Analysis

The robust estimation of the low-dimensional subspace that spans the data from a set of high-dimensional, possibly corrupted by gross errors and outliers observations is fundamental in many computer vision problems. The state-of-the-art robust principal component analysis (PCA) methods adopt convex relaxations of `0 quasi-norm-regularised rank minimisation problems. That is, the nuclear norm an...

متن کامل

Matrix Completion and Related Problems via Strong Duality

This work studies the strong duality of non-convex matrix factorization problems: we show that under certain dual conditions, these problems and its dual have the same optimum. This has been well understood for convex optimization, but little was known for non-convex problems. We propose a novel analytical framework and show that under certain dual conditions, the optimal solution of the matrix...

متن کامل

A Pseudo-Bayesian Algorithm for Robust PCA

Commonly used in many applications, robust PCA represents an algorithmic attempt to reduce the sensitivity of classical PCA to outliers. The basic idea is to learn a decomposition of some data matrix of interest into low rank and sparse components, the latter representing unwanted outliers. Although the resulting problem is typically NP-hard, convex relaxations provide a computationally-expedie...

متن کامل

No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis

In this paper we develop a new framework that captures the common landscape underlying the common non-convex low-rank matrix problems including matrix sensing, matrix completion and robust PCA. In particular, we show for all above problems (including asymmetric cases): 1) all local minima are also globally optimal; 2) no highorder saddle points exists. These results explain why simple algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014